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The choice of transmission conditions parameters has a significant impact on the convergence of domain decomposition methods,
especially when applied to exterior propagation and scattering problems. In this work, we study numerically the convergence behavior
of two domain decomposition algorithms within the framework of the Finite Element Method, namely the Restricted Additive Schwarz
and Multiplicative Schwarz with upward and downward sweeps (or Double Sweep), with different transmission conditions for the
electromagnetic scattering problem in 2d. In addition, we propose a new approach to obtain the optimized parameters based on the
optimization of the spectral radius of the iteration matrix on the Fourier domain.

Index Terms—Finite Element, Electromagnetic Scattering, Domain Decomposition, Schwarz Methods

I. INTRODUCTION

THE NUMERICAL simulation of wave propagation and
scattering problems is present in several fields of engi-

neering and science (antenna design, medical imaging, geo-
physics..etc), but at high frequencies it still poses major
computational challenges [1]. As the frequency grows the
wavelength becomes small compared to the computational
domain, and the number of degrees of freedom per wavelength
to represent the oscillations of the solution and control the
pollution effect becomes larger. On the one hand, direct solvers
may require extensive memory and time requirements; on the
other hand, iterative solvers based on Krylov subspace methods
may present slow convergence or even diverge [1].

Domain Decomposition Methods (DDM) appear as an ap-
pealing alternative because of their suitability for working on
parallel computers and guaranteed convergence as iterative
solvers (with two sub-domains and specific transmission con-
ditions) [2]. Optimized transmission conditions can be used to
improve convergence [2], [3], but even with optimal transmis-
sion condition the number of iterations grows proportionally
to the number of sub-domains [4].

The Transmission Conditions (TC) are applied at the in-
terfaces between neighbor sub domains, and therefore the
exchange of information is restricted locally. To further im-
prove the convergence, the addition of a new component that
allows global communication becomes necessary [2] - [5].
Unfortunately, the basic principle of the coarse grid fails when
employed for propagating problems. Furthermore, the standard
procedure for obtaining free TC parameters considers only
two sub-domains and does not take into account that the
contribution of the propagation modes remain significant at
long distances [3].

In view of that, we aim to analyze the influence of the
number of sub-domains on the rate of convergence of Schwarz
decomposition method with and without a coarse grid and
propose a new approach to obtain optimized TC that take into
account the number of sub-domains and the propagating nature
of the problem.

A. Model Problem

We consider the normal incidence plane wave scattering by
an infinitely long (in z direction) perfect conducting object (see
Fig. 1) and assume that the wave has TMz polarization. The
problem can be written as:

∆Etz + k2Etz = 0 in Ω
Etz = 0 on Γd

∇Etz · n̂− jkEtz = ∇Eiz · n̂− jkEiz on Γ∞

 (1)

where Etz = Eiz + Esz is the total electric field, Eiz =
E0e

−jkx is the incident (plane wave field) and Esz is scattered
field due to the presence of the scatters.
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Fig. 1. An exterior scattering problem with circular artificial truncation
boundary decomposed into multiple subdomains

II. DOMAIN DECOMPOSITION - OPTIMIZED SCHWARZ

The original problem in (1) is decomposed into n smaller
boundary value problems:

(∆ + k2)Ezi = 0 in Ωi
Bij(Ezi) = Bji(Ezj) in Σij

}
(2)

The boundary conditions on ∂Ωi ∩ ∂Ω from the original
problem are retained, although they are omitted in the descrip-
tion of subproblem in (2). We assume that the linear operators
B are of the form:

B = ∂n + Sj (3)

The optimal choice of the transmission operator Sj in (3) is
the Dirichlet-to-Neumann (DtN) map [2]. The DtN is a non-
local operator, and therefore optimized Schwarz DDM make



use of use a local approximation of this operator. This amounts
to defining absorbing boundary conditions on the artificial
interfaces. A perfectly matched layer (PML) can also be used
for that purpose, as in [5].

The propagating modes are the main reason of the non-
scalability with respect to the number of sub-domains, because
the propagating modes can go much further than the evanescent
modes. We will concentrate on overlapping DDM, because the
overlap can take care of the higher spatial frequencies due to
the exponential decay [3].

A. 0th Order Approximation

The most common TC is the known as Robin or 0th Order
TC, and can be written as:

Sapp = ±(p+ qi), p, q ∈ R+ (4)

We will compare three approaches to obtain the free param-
eters p and q in (4). The first TO0 (Taylor Zeroth Order), is
obtained by the Taylor expansion of the DtN symbol in the
vicinity of f = 0 (where f is the frequency in the Fourier
domain). As a result we have that p = 0 and q = k. The
second is OO0 (Zeroth Order optimized), which is based on the
Fourier transform of the partial differential equation with two
sub-domains, obtaining an explicit recurrence relation for the
iteration. The free parameters are then obtained by optimizing
the convergence factor [2]. With some simplifying assumptions
closed formulas for p, q can be obtained [3].

In this paper we propose a different approach, MO0 (Multi-
ple Domain Optimized Order Zero TC). Instead of considering
only two sub-domains after Fourier transform of the partial dif-
ferential equation, we consider n layered sub-domains, which
results in an iteration matrix Ψ, of size 2n×2n. Then the free
parameters are obtained by optimizing the spectral radius of
Ψ. More details on the algorithm and numerical analysis of
second-order transmission conditions will be provided in the
full paper.

III. NUMERICAL RESULTS

We use a model problem with a known exact solution, a
plane wave scattering by an infinitely long perfect conducting
metallic cylinder with r = 0.5m. A first order absorbing
boundary conditions (ABC) with a fictitious circular boundary
Γ∞ with radius R = 1.5m is used to truncate the domain. The
incident wave is a plane wave ejkx. Two different frequencies
were analyzed k = 2π and k = 10π. In both cases the
discretization density is nλ = λ

h = 25, using linear triangular
finite elements. DDM methods has been also applied to high
order edge elements [6].

The computational domain Ω is decomposed into n over-
lapping sub-domains. Each Ωi is obtained by extending a non-
overlapping partition by one element mesh layer. The local
finite element matrices are assembled, with the aid of the
FEniCS library [7]. Each sub-system is solved only once, using
a multifrontal LU factorization [8], and then in each iteration
backsubstituitons steps are performed. Fig. 2 shows the cyclic
domain partition for k = 10π and n = 32. Emphasis will
be given to the convergence of the methods, measured by the
iteration count when a relative 10−6 decrease of the residual

is reached. The relative error remained below 3.0% for all
experiments.

Fig. 2. Decomposition into 32 subdomains with minimal overlap.

Both Restricted Additive Schwarz (RAS) and an overlapping
modified version of the Double Sweep algorithms are used as
preconditioners for the GMRES method. Iteration counts for
k = 2π are presented in Table I. The MO0 TC performed
better than the others in spite of the algorithm used. The same
conclusions can be drawn for k = 10π, see Table II.

TABLE I
k = 2π

RAS Double Sweep
# Subdomains OO0 TO0 MO0 OO0 TO0 MO0

8 37 33 31 5 5 5
16 54 49 48 16 15 9
32 95 90 88 20 19 16
64 127 123 119 26 26 20

TABLE II
k = 10π

RAS Double Sweep
# Subdomains OO0 TO0 MO0 OO0 TO0 MO0

8 54 47 47 15 12 11
16 75 67 66 36 31 31
32 190 142 142 95 88 77
64 331 268 264 155 90 84
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